The Authoritative Galant VR-4 Resource

Join the best E39A 1991-1992 Mitsubishi Galant VR-4 community and document your GVR4 journey.

  • Software Upgraded - Reset Your Password to Login
    In order to log in after the forum software change, you need to reset your password. If you don't have access to the email address you used to register your account, you won't be able to reset your password. In that case, follow the instructions here to regain access to the forum.

How to figure compression ratio


Well-known member
Aug 29, 2013
Pensacola, Florida
How to figure Compression Ratio

I have noticed very few know what their real compression ratio (CR) is. Most think since they have 9.0:1 pistons, that they have a 9.0:1 CR engine. The pistons in the engine are only one part of the formula. Several other things can affect CR, such as having the head and/or block milled, over sized valves, even a basic valve job can and will change CR.

The basic formula to figure compression ratio is fairly simple, but getting the volumes needed for the formula will take a few pieces of specialized equipment.

The formula is V1+V2+V3+V4+V5/V1+V2+V3+V4


V1 = Combustion chamber volume
V2= Head gasket compressed volume
V3= Piston volume, either a + or – depending on design
V4= Piston to deck clearance volume
V5= Swept volume of the cylinder

Now it is the time to start filling in the volumes to work the formula.

I am going to start with V5 or swept volume of one cylinder.
To find this there is another formula that needs to be worked.
The formula is for finding Cubic inch displacement or CID
Since most have a 2.0l 4G63T engine, that is the base engine I will work with.

The formula for CID is
Pi x R sq x S x C

Pi = 3.141
R = Radius of the cylinder bore or half of the diameter squared
S= Stroke of the crank
C= the number of cylinders of the engine

The bore of the 4G63 is 85mm and the stroke is 88mm

To convert from mm to inches multiply by .03937

85mm bore x .03937 = 3.346 inches
88mm stroke x .03937 =3.465 inches

Now to figure R squared

3.346/2= 1.673

1.673 x 1.673 = 2.799

Now to figure CID

3.141 x 2.799 x 3.465 x 1 = 30.463 CI

Now to convert back into metric measurement

30.463 ci x 16.387cc = 499.197cc

V5 = 499.197cc
The same formula is used to figure Head Gasket compressed volume.
I am going to us a Fel-Pro Composite 9627PT
The Fel-Pro has a bore dia, of 3.445 and a compressed thickness of .039

3.445/2= 1.7225
1.7225 x 1.7225 =2.967

3.141 x 2.967 x .039 = .363

.363ci x 16.387 = 5.948cc

V2= 5.948cc

Sometimes the manufacture will publish the compressed HG volume.

Now the two most difficult volumes have been figured, the rest will go rather quickly.

Piston to deck clearance is fairly simple, the 4G63 is called a “Zero” deck engine, meaning the top of the pistons is flush with the deck of the block.

If the block has been surfaced, the pistons may protrude above the block deck by a few thousands.

This still need to be measured.


Now on to the pistons, V3

Wiseco pistons are a common choice in builds.

page 64 and 65

K559M85 6bolt 17cc dish (8.3CR)
K560M85 6Bolt 10cc dish (9.0CR)
K625M855 6Bolt 14cc dish (8.5CR)

Now on to the head, It is commonly advertised that the 4G63 cylinder head is 47cc.

47cc may be what the engineer who designed the head wanted, but in real life it may be larger or smaller than that. Starting with the foundry that cast the head blank.

Now let’s look how all this works together.

I have four short blocks in the shop I measured.

(SB1)The first one is a 6 bolt, stock rod, STD bore , 63DT pistons.
The block has been milled, the piston is .001 below the deck and has a 21cc volume, this includes the piston dish.

(SB2)The second block is a 6 bolt, Manley Turbo tuff rods, Manley pistons, Part number 6625M885 (.020 over), the block has been decked and the pistons protrude above the deck .003 Dish volume of the pistons is 16 cc

(SB3)The third is a 7 bolt, stock rod, STD bore with 63DTF1 pistons, The block has been milled, the pistons are .002 below the deck, The volume of this combo is 14cc

(SB4)The fourth is a 7 bolt with EVO pistons, E9K1, rods are unknown, the block has been belt surfaced, the pistons sit .060 below the deck, the volume on this combo is 15cc ( This engine was done at another shop)

Now so you do not have to do the math longhand, I would suggest downloading an engine calculator.

This is the one I use.
Download program Virtual Engine Calculator by Challenger Engine Software

Now we need some head info that contains the combustion chamber volume.

To make it simple, I will use my build thread.

Now lets figure some real world compression.

The bore and stroke is simple enough, along with the gasket bore.

Stroke is 88 mm = 3.465
Bore is 85mm = 3.346
Gasket bore is 3.445 (felpro 9627PT)

Since I have cc’ed the short block,SB1, we will use that number in the “Dome cc’s” slot, so that is 21cc

Now in the “Gsk + Deck” slot, Just use the HG thickness, since the volume above the piston to the deck was figured when the short block was cc’ed
HG Thickness= .039

Now we need the head spec.

I will use head E80, This head has a thickness of 5.191 and is 46cc

Input it all in and you end up with a CR of 7.55:1

So this shows that the engine has even less compression than what is stated. Even after machine work, like block and head surfacing.

A Stock 6 bolt is stated to be 7.8:1 compression ratio

Let’s look at another at another combo.

This time we will use SB2 and head E83 with 44.25cc
Same Felpro composite HG.

Now since the pistons are .003 above the deck, we will subtract that from the HG thickness, making the gasket thickness .036

Also this is a .020 or .50mm overbore block
So the bore has to change from 3.346 to a 3.366 bore

The wiseco piston PN 6625M855 is listed with a -14 dish, and is listed as 8.5:1 CR piston

In the block I measured a 16cc volume, the 2 extra cc’s is from the gap above the top ring and between the side of the piston and the cylinder bore.
When the math is run this combo works out to be 8.44:1

Additional info

Ross pistons PN 99815
-15cc dish
.004 below the block deck

With a 44cc head & Felpro HG (.039)

Last edited:


Apr 30, 2006
... damn I hate math /ubbthreads/images/graemlins/banghead.gif

Thing is, it's the only way to know what you're actually trying to tune around.

Ever wonder how some guys are just ... faster ... with less breakage running the same parts as everyone else?

... it's the details, and knowing your actual c.r. is one of them /ubbthreads/images/graemlins/wink.gif

Just bumping the c.r. up or down a schosche will influence many other pieces.

... things like cams,

Their selection and dialing in theor position for optimal opening closing of the valvetrain for instance

Knowing the actual c.r. of your particular combination going in will help you make many subtle changes to the parts sheet, helping you to optimise the final tune and achieve everything your combination will alllow.

Thanks for the post!

p.s. I always leave the metric conversion out of it, makes the math easier.

'sides real machinists speak in red curlies

Ever hear an old guy say it's off by a millimeter?


They speak in thousands of an inch

true proffessionals use the red curly "standard" /ubbthreads/images/graemlins/devil.gif

and those, I can assure you, are measured in thousands of an inch

... not some nancyboy metrical bullshite /ubbthreads/images/graemlins/grin.gif


Well-known member
May 4, 2003
Clarksville TN
Toybreaker said millimeter so thats a start to the darkside because he now recognizes its significances next will be sig figs and Jon buying correct measurement devices and a metric set of sockets to work on imports. Can't believe you've been stuffing shims in standard stuff for this long /ubbthreads/images/graemlins/grin.gif

I would have loved to be at the dinner table when you and your Dad talked standards because I know its happened and damn he won.......because the speed of light in a vacuum is the only constant thing we have and he's the man. Don't even start the fight, you don't want it ................... /ubbthreads/images/graemlins/rofl.gif
Support Vendors who Support the GVR-4 Community
Boosted Fabrication ECM Tuning ExtremePSI Fuel Injector Clinic Jacks Transmissions JNZ Tuning Kiggly Racing Morrison Fabrications RixRacing RockAuto RTM Racing STM Tuned

Recent Forum Posts