The Top Mitsubishi Galant VR-4 Resource

Join the best E39A 1991-1992 Mitsubishi Galant VR-4 community and document your GVR4 journey.

  • Software Upgraded - Reset Your Password to Login
    In order to log in after the forum software change, you need to reset your password. If you don't have access to the email address you used to register your GVR4.org account, you won't be able to reset your password. In that case, follow the instructions here to regain access to the forum.

s-afc tuning-help me Ken Inn!, you're my only hope

broke down

Well-known member
Joined
Jul 15, 2002
Messages
1,075
Location
Muncie, Indiana
I was told that Ken Inn had a really informative post on tuning the s-afc. I've searched for it but haven't come up with it. Can someone tell me where it is? Or at least a better place than road race's to get tips on tuning. First timer here, so I need very basic instruction until I get more familiar with it. Thanks a lot.
 

496of2000

Well-known member
Joined
May 4, 2001
Messages
642
Location
San Diego, CA USA
Someone else wrote this FYI

Basic tuning theory

The factory Engine Control Unit (ECU) employs a narrowband Oxygen
sensor to check the results of a closed-loop fuel ratio control process.
The ECU
comes with fuel maps that are based on the input from several engine
sensors: The Intake Air Temperature sensor, Barometric Pressure sensor,
Engine Coolant Temperature sensor, and Knock/Detonation sensor. The details
could fill a large book, but the easiest way to think of it is that once the
engine is at a normal operating temperature, the Fuel Injectors are opened
for a certain amount of time, which is determined mainly from the Airflow
reading. DSMs use a Karman Vortex style of Mass Air Flow sensor (MAF) that
the
air filter assembly attaches to directly. It is important to note that the
airflow value is determined BEFORE the air is pressurized by the turbo,
and that any air leaks in the piping between the MAF and the throttle-body
will skew the airflow reading. A leak before the turbo will result in the
ECU
getting a smaller airflow reading than it should, and a leak after the turbo
will result in the ECU getting a larger airflow reading.


The ECU operates in two modes. The first mode referred to as "Closed-Loop"
is what the ECU uses for part throttle and cruising operation. In
closed-loop operation the ECU cycles the air fuel ratio between a little
rich and a little lean using the Oxygen Sensor Feedback Trim as shown on a
datalogger. In this mode the actual Oxygen Sensor Voltage is unimportant,
but the fact that it is cycling up and down is useful since it means the ECU
is operating in closed-loop properly, allowing the ECU to fine-tune the
Air/Fuel Ratio (AFR).


The second mode of operation is called "Open-Loop" and is used mainly
at full throttle or whenever the engine RPM is over 4500. The ECU also uses
Open-Loop if the fuel trims are out of range (I.E. you don't have it tuned
right). In this mode the ECU adds fuel based on a direct lookup of the
airflow on a fuel map. No fuel trims are used to adjust the base maps in
this mode. The oxygen sensor voltage output will be fairly constant in
this mode and can be used to determine whether the AFR is rich or lean. In
short, if the O2 voltage is cycling up and down several times a second
then it is in Closed-Loop, and if the O2 voltage is steady then it is in
Open-Loop.


The fuel trims are adjusted by the ECU automatically to provide the
"proper" AFR during all cruising/part throttle situations. This process
works very well and the stock ECU is able to compensate for most sensor
calibration problems. The ECU cannot compensate for larger injectors, or a
crazy big fuel pump, or a modified MAF, this is where the AFC becomes
useful.

---------------------------------

How the AFC Works

The AFC is a simple device that alters the airflow signal that the ECU
reads. The AFC sits between the airflow sensor (MAF) and the ECU, and
works similar to an EQ for a stereo. The AFC adjusts the airflow value that
the
ECU reads up, or down based on RPM, and switches between a LO and HI
adjustment map based on throttle position. On a DSM the MAF changes the
frequency of the output signal based on airflow, so the more airflow the
higher the frequency. The AFC takes the frequency input from the MAF,
looks at the engine RPM, then looks at what the setting is on the AFC for
that
RPM. Since the AFC has a limited number of RPM points, the AFC
interpolates the values when between two RPM points. So if the 4000 RPM
setting is +15% and the 5000 RPM setting is +12%, and the engine is running
at 4500 RPM then the AFC would adjust the frequency that the ECU sees by
averaging the two values. In this case it would be (15 + 12) / 2 = +13.5%.


There are two maps on the AFC. One is called the LO map and the other
the HI map. Which map it uses is determined by the throttle position.
When the AFC is initially set up, the throttle position for the LO and HI
map is configured. The default is something like 30/60. This means the LO
map values will be used exclusively from 0-30% throttle, then it will
interpolate values between the LO and HI maps from 31-59%, then use the
HI map exclusively from 60-100% throttle position. For a DSM application,
it is easier to tune if the maps are either on or off, instead of mixing
the values between them. Set the Th-Point to 69/70 so it uses the LO map up
to 69% throttle and then goes to full HI map beyond that. This separates
the
maps into closed loop and open loop maps, making it easier to tune.

--------------------------------

Initial AFC Setup

A few installation tips first. Be sure to use the Pink and Orange wires
for the airflow signal wires, and NOT the Yellow and White wires. The AFC
is
a universal device and is setup to handle both Speed-Density and
Mass-Airflow type systems. The Pink and Orange wires are for Mass-Airflow
systems like DSMs.


In the Setting Menu, set the Th-Point to 69 for Lo and 70 for Hi. Set
the Ne-Point so the RPM points are 1000, 2000, 3000, 4000, 4500, 5000,
6000, 7000 for stock rev limiter, or 1000, 2000, 3000, 4000, 5000, 6000,
7000,
8000 for raised rev limiter.


In the Etc Menu, set the Sensor Type to "Karman" for a DSM. The Car
Select should be set to Cyl 4 with the Thr arrow pointing up meaning a
rising rate throttle position sensor. Set the GRPH Scale to 30,
Initialize will reset everything to factory defaults so it should be set to
No.

------------------------------------------------

Usage Tips provided by Road Race Engineering:

1. Monitor


For monitoring gauge functions, we like the following settings:


1 Gauge RPM
2 Gauges RPM and Karman
3 Gauges RPM, Karman and Correction
4 Gauges RPM, Karman, Correction and Throttle Position
You will not be able to see any values for "Air Flow" or "Pressure". Why?
Because you don't have an air flow meter or a pressure sensor to monitor.
These are for other cars.
If you push briefly both "Prev." and "Next" at the same time, you jump
from which ever screen that you are on in Monitor to the last screen you
were
in on Setting. It allows you to jump directly from monitoring throttle
position and RPM directly to the Lo-thrtl setting menu for adjustment.
When on the Lo-thrtl menu, push "Next" to jump to Hi-thrtl. By pushing
"Next" you can jump back and forth between Hi and Lo.

2. "Blue Wire Mod"


Huh? Blue wire mod? This allows you to read Oxygen Sensor Voltage on the
AFC display. On the wire harness for the AFC there are three wires that
normally not used on an Eclipse. These are White, Yellow and Blue. The Blue
wire is meant for the second Air Flow Meter on a Nissan 300ZX. You will
connect this wire to the O2 sensor wire right at the ECU. See the Jumptronix
Install instructions for info on where to get the O2 sensor signal. To read
the O2 sensor voltage, scroll down to and select the "etc." menu. Select
the "Sensor Check". Of the three readings, O2 voltage will be the middle one
(#2)

3. Common Problems:

-RPM Signal off by half (1G)
Because of the way that Mitsubishi triggers the ignition coils, this is
normal. To fix it, just set the Cylinders to "2"

-Car runs like crap, wont rev past 2-3K rpm, No change in the Hz reading
on the Karman display


You read the wrong section in the manual and chose the yellow and white
wires to modify the airflow signal. Wrong, you should have used the pink
and orange wires.

You have a bad connection on either the pink or orange wire.
You have the pink and orange wires reversed.
You didn't select "Karman" for the air flow meter type.

-No display or other power problems
You have been swinging the AFC around by the wire harness. This will pull
the harness out of its internal socket. To check it or fix it, carefully
unscrew the back cover with the proper small size Phillips screwdriver.
Make sure the little connectors are plugged in all the way.

------------------------------

Actually tuning the thing

So hopefully at this point the AFC is installed and the car starts up and
at least sort of runs. The first thing to do is to figure out where to
start. The main factors are the type of Airflow sensor and the injector
size. If the injectors aren't the factory size, first determine the
difference in the size of the injectors between the upgraded injectors and
the original injectors. The original injectors will be 450cc for 1G and 2G
turbo models, and 380cc for 1G automatic turbos. If you upgraded from 450cc
to 660c injectors for example, take 450 / 660 and it works out to roughly
30% bigger than the stock injectors. If the MAF is stock then you just need
to worry about the injector sizing. If the car is a 1G with a 2G MAF, the
MAF alone will read about 20% leaner than the stock MAF, add the Injector
sizing and MAF differences together and those are the starting points on
the AFC. For example, a 2G with stock MAF and 550cc injectors would set the
AFC to -18% from 1000-4000 RPM to start. A 1G with a 2G MAF and 660cc
injectors would use -30% for the injectors and +20% for the 2G MAF, so that
works out to -10 on the AFC from 1000-4000 to start.


Start the engine and let it warm up to full operating temperature.
Turn off the motor and reset the ECU by pulling the fuse for 10 seconds.
This
is accomplished by pulling up on the yellow fuse holder in the fuse block by
the BOV on 2Gs, or by removing the lower-right corner fuse labeled ROOM on
1Gs. This will clear the fuel trims that the ECU is currently set with.

Tuning without a Datalogger

Life is much easier with a datalogger, but not everyone has one. To tune
right the car will need some way to view O2 sensor voltage (see Blue Wire
info above), and an Exhaust Gas Temperature Gauge with the probe
preferably mounted somewhere in the #1 or #2 exhaust runner. For the LO
map, start at idle with the engine fully warmed up, and set 1000 RPM until
the O2 voltage is cycling up and down and not holding a fixed value.
Usually the O2 voltage will be switching back and forth between .3 and .7
volt. This as discussed above is referred to as Closed Loop operation.
Once the O2 voltage is cycling, reduce the AFC setting until it stops
cycling, then increase the setting until it starts cycling again, then add
another 2 clicks on the AFC setting.
With the Idle now set, cruise at a constant low throttle for each of the
remaining RPM points and do the same. Cruise along at 2000 RPM until the
O2s are cycling, then lean it out until the O2s stop cycling, then add
fuel again until it starts cycling and then go another 2 clicks up. Do this
for 2000-4000 RPM. With the cruising area set, take the 4000 RPM value and
use that for 5000+, all on the LO map.


For the HI map, copy all of the settings from the LO map over so the
HI map is set the same from 1000+. With the boost set at a conservative
level, around 10-13PSI, do 3rd gear pulls from 3000-7000 RPM until the O2
voltage is pretty even at a constant value. The value should be .85-.88 for
1G
pistons, and .92-.94 for 2G pistons. Watch the EGT gauge and let off the
throttle if it exceeds 900C. Adjust the AFC as needed until the O2
voltage is in the ballpark and the EGTs are staying under 900C. This is the
baseline setting and you can adjust up or down from there based on best
judgment.

Tuning with a Datalogger

Set the logger to monitor RPM, Timing, Knock Sum, O2 Voltage, Lo Med and
Hi Fuel Trims, and O2 Feedback trim, Throttle Position, plus whatever else
you like. With the engine fully warmed up and the ECU recently reset, set
the
Idle 1000 RPM on the LO map until the O2 Feedback trim is averaging in the
middle of the scale. While cruising around at part throttle, hold the RPM
steady at each set point on the AFC from 2000-4000 and do the same until
each of the RPM points have the O2 Feedback trim averaging in the middle
of the scale. Pay attention to the Fuel Trims and if they are adjusting
then
compensate with the AFC. If the Fuel Trims are going leaner, then reduce
the setting on the AFC and vice versa. The goal is to have the O2 Feedback
trim averaging in the middle of the scale while in closed loop operation,
and have the Fuel Trims right in the middle of the scale or slightly
positive. Try to avoid having the Fuel Trims in the negative part of the
range since that means the AFC is set too rich. Once the baseline
settings are done, monitor the Fuel Trims over the next few days without
making
changes to the AFC and see where the Fuel Trims wind up. If they are
within +30% of the middle of the scale then that is close enough. Set the
4000+
RPM range the same as 4000 for the rest of the LO map.


For the HI map, copy over the settings from the LO map to start with.
Ideally the car will have an EGT gauge for reference purposes. This is
not to exceed 900C while tuning. Let off the throttle should the EGTs get
too
high or the Knock Sum gets really high on the logger. With the boost set
at a conservative value in the 10-13PSI range, make 3rd gear pulls from
2000-7000 RPM until the O2 voltage is in the .85-.88 range for 1G pistons
or .92-.94 range for 2G pistons. Adjust the AFC until the O2 voltage is
even
across the whole RPM range at full throttle, and within the proper voltage
range. Pay attention to the knock sum value and if it is high, try
adjusting the AFC settings higher and see if that reduces the knock sum.


After the baseline values are set for both the LO and HI maps, turn up
the boost slowly and monitor the EGT and Knock Sum. Ideally the EGTs will
peak at 880C and the Timing on the logger will be above 15 degrees.
Adjust the AFC up or down until this occurs. Keep in mind that if the boost
is
too high for the fuel octane, no matter how high you crank up the AFC the
EGTs
will still be really high. It is better to have less fuel and less boost
than to have to add lots of fuel to control the EGTs.
 

GVR-4

Well-known member
Joined
Apr 22, 2002
Messages
2,610
Location
Asheville, NC USA
DUDE! I didn't know we could post something that long.
grin.gif
 
Support Vendors who Support the GVR-4 Community
Boosted Fabrication ECM Tuning ExtremePSI Fuel Injector Clinic Jacks Transmissions JNZ Tuning Kiggly Racing Morrison Fabrications RixRacing RockAuto RTM Racing STM Tuned

Recent Forum Posts

Top